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Constrained order in frustrated 2D optical patterns
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Abstract. In 2D optical patterns obtained in a Liquid Crystal Light Valve with optical feedback, we show
a new kind of geometrical frustration which comes from the imposed form of the boundaries. The circular
section of the incoming laser beam presents a symmetry which belongs to the O(2) group, whereas the
optical feedback selects patterns with a symmetry restrained to a dihedral subgroup of O(2). By imposing
boundaries which respect the symmetry of the dihedral group, we lift the frustration and obtain perfectly
ordered patterns.

PACS. 42.79.Kr Display devices, liquid-crystal devices – 42.65.Pc Optical bistability, multistability,
and switching – 61.44.Br Quasicrystals

1 Introduction

Geometrical frustration is a subject of great interest up
to now [1,2]. In particular, it can play a role in nonlinear
pattern forming systems. For example, geometrical frus-
tration may arise whenever the shape of the boundary has
a symmetry which is not commensurate with the one of
the patterns. Here we show that this kind of frustration
may be removed or controlled by adjusting the shape of
the boundary in order to accommodate the symmetry of
the patterns. The experiment is performed on 2D optical
patterns obtained in a Liquid Crystal Light Valve (LCLV)
with nonlocal feedback, as originally introduced in refer-
ence [3]. This system is well-known for studying pattern
formation. Many different dynamical behaviors were ob-
served, depending both on the geometrical construction of
the optical feedback loop and on the physical parameters
of the liquid crystals [4].

It is well-known that boundary conditions influence
the dynamics of nonlinear pattern forming systems both
by altering the symmetry of the spatial structure and
through the restriction they introduce in the parameter
space. Besides these effects, a pinning mechanism occurs,
which constrains the pattern to choose a specific direction
with respect to the boundary. For example, it has been
shown in Rayleigh-Benard convection [5] that rolls tend
to align perpendicularly to the sidewalls of the fluid con-
tainer, giving rise to a curvature effect which is responsible
for the time dependence of the observed patterns. Another
clear evidence of geometrical frustration may be found in
a magnetic foam experiment [6] where the insertion of a
circular obstacle leads to a strong modification of the cel-
lular arrangement. Also, the hexagon-square transitions
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observed in ferrofluids [7] and in Marangoni convection [8]
manifest themselves by the pinning of the secondary struc-
ture both to the defects of the hexagonal structures and
to the borders of the system. Then, quasicrystalline pat-
terns are observed in Faraday waves experiment, where
geometrical frustration comes from the confinement of the
fluid [9]. Of a different nature are the quasi-patterns ob-
served in Faraday experiment with a high viscosity fluid,
where the simultaneous forcing with two frequencies leads
to bicriticality in the wavenumber space [10]. In this case,
dissipation rules out all the linear modes of the container,
and frustration is due to the simultaneous excitation of
nonlinear modes with incommensurate wavenumbers.

Recently, geometrical frustration has also been pro-
posed [11] as a possible explanation for the complex
spatio-temporal dynamics observed in a Liquid Crystal
Light Valve (LCLV) with feedback. In this case, frustra-
tion arises from the competition between the geometrical
constraints (structure of the optical cavity, rotation of the
feedback image) and the physical constraints (light-matter
interaction). Again, the presence of several modes with in-
commensurate wavenumbers leads to quasi-crystals or to
pattern competition [12].

Another kind of geometrical frustration which natu-
rally appears in optics, is associated to the size and shape
of the pumping light beam. As shown in reference [13],
restrictions on the system size may greatly change the ge-
ometrical repartition of patterns. Indeed, when the profile
of the laser beam is smaller than the basic size of the
transverse spatial structure, a change of the symmetry
of the patterns is observed. Several experimental verifi-
cations have been reported [14]. This kind of frustration
comes from the strong limitation of the size of the system,
which results in strong deformations of the basic structure.
For example, if an hexagon cannot fit inside the available
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Fig. 1. Experimental setup: the two confocal lenses L1 and
L2 provide a 1:1 image-forming system from the front side of
the LCLV to its rear side. The optical feedback loop is closed
by a fiber bundle, which can be twisted in order to provide a
rotation angle ∆. Pin is a polarizer selecting the input light
polarization. Its orientation is vertical as well as the liquid
crystal director n.

space, it may loose one cell and transform into a pentagon,
which corresponds to a drastic change of symmetry.

Here we want to study the geometrical frustration
which is related more to the shape of the boundaries than
to their size. Therefore, we will restrict ourselves to the
case where the size of the system is large enough compared
to the basic length of the patterns. In this case, geometri-
cal frustration is introduced by the circular profile of the
optical beam. Actually, the Gaussian profile of the illumi-
nation forces the system to be invariant under rotations
and reflections in the transverse plane (O(2) symmetry
group). This group of symmetry, respected by any circu-
lar boundary, does not fix any of the dihedral subgroups
naturally selected by the dynamics of the system [4]. But,
since boundaries introduce a correlation length over which
patterns are pinned, depending on the mutual size of the
boundaries and of the pinning length, the overall symme-
try of the patterns can be affected by the shape of the
boundaries.

In Section 2, we present the experimental setup and
the basic features of the pattern formation process in the
LCLV with feedback. The experimental results are pre-
sented in Section 3, where we show that geometrical frus-
tration may also induce dynamics of patterns. Besides,
we show that the frustration can be removed through the
application of boundaries which respect the dihedral sym-
metry of the basic structure. We present our numerical
approach for analyzing the patterns and we discuss the
results in Section 4. Our processing allows us to evaluate
the correlation length for the pinning mechanism, which
can be an useful indication for determining the border
between small and large systems, a problem which often
occurs in the realization of experimental systems.

2 Experimental setup

A schematic of the experimental setup is displayed in Fig-
ure 1. The LCLV is essentially a mirror sandwiched be-

tween a nematic liquid crystal and a photo-conductive
layer. An AC voltage is applied between the photo-
conductor and the liquid crystal. In the presence of light
on the photo-conductor, the voltage drop across the liquid
crystal layer increases inducing a reorientation of the LC
molecules. For the reflected light, this reorientation pro-
duces a phase change. Transverse patterns in the optical
field are due to diffraction which converts the phase modu-
lation, generated within the LCLV, into amplitude modu-
lation. This latter one, on its turn, modifies the properties
of the LCLV. In this way, a positive feedback is realized
for all those spatial frequencies satisfying the resonance
conditions q2L/2k = π/2, 3π/2, ..., where q is the field
transverse wavenumber, k = 2π/λ is the optical wavenum-
ber and L is the free propagation length [15]. In our case
λ = 632 nm is the wavelength of an He–Ne laser and L can
vary between 20 and 60 cm. The laser beam is expanded
up to a diameter of 2.5 cm which is the transverse size
of the LCLV. By inserting a circular diaphragm of 1 cm
diameter in front of the LCLV, only a central region is let
to be active so that the medium is uniformly illuminated.
Indeed, the intensity profile of the laser beam can be con-
sidered flat on its central region and it is not playing any
role in the stability of the observed patterns.

The natural symmetry of the transverse patterns here
arising is the hexagonal one, due to the quadratic charac-
ter of the light-matter interaction [16]. The characteristic
size of the pattern is the one satisfying the resonance con-
dition q−1 ' (λL)−1/2, i.e., of the order of a few tenth of
mm for the parameters currently set in the experiments.

The feedback is realized by means of a coherent opti-
cal fiber bundle. By twisting the bundle, the image on the
back of the LCLV can be rotated by any angle ∆ = 2π/N
with respect to the front image. This rotation impose an
overall N -fold symmetry which can or not be consistent
with the symmetry provided by the quadratic nonlinear-
ity of the light-medium interaction. In the present exper-
iment, we fix the rotation order to N = 3 or N = 4,
values which satisfy the quadratic nature of the physical
interactions. Therefore, rotation does not introduce any
geometrical frustration [11] and we expect patterns to be
ordered crystals. But, because of the circular shape of the
transverse boundary geometrical frustration does indeed
appear. Close to the boundaries the pattern is distorted
and composed by distinct spatial domains with different
orientation of the basic structure. By imposing boundaries
with a shape which belongs to the same dihedral group of
the basic symmetry, the pattern is pinned in a single di-
rection over its entire extension and frustration is thus
removed.

3 Results and numerical analysis

We show in Figure 2a a typical pattern observed for
N = 3. While in the center there is an almost perfect tiling
of hexagons, close to the borders the regular arrangement
is becoming loose and the pattern is composed of domains
tiled with hexagons oriented in different directions. In the
course of time, these domains are sliding and reorienting,
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Fig. 2. (a) A typical pattern obtained for a rotation order
N = 3 and with circular boundary; (b) for the same conditions,
time average of successive images.

thus giving rise to slow dynamics. In Figure 2b we show a
pattern resulting from the time average of successive im-
ages over 5 s. It can be noticed that the hexagons in the
center remain fixed and ordered while towards the borders
the averaged image is characterized by much less contrast.
This is a signature of the fact that in these locations the
pattern is moving and changing. In this case, we should re-
cover the symmetry of boundaries, as originally predicted
and observed in Faraday waves experiments [17]. This ef-
fect has also been observed in Rayleigh-Benard experi-
ment [18] and in an optical photorefractive oscillator [19].
In our case, time average results in portions of rolls par-
allel to the boundaries, which is in agreement with the
previous observations.

Notice that, with no feedback rotation, we obtain the
same results as in the case of N = 3 rotation order. How-
ever, without image rotation, the systems becomes more
sensitive to LCLV inhomogeneities and to optical mis-
alignments. Since we want to avoid any other source of
pattern pinning than boundaries, we prefer to work with
feedback rotation.

In order to impose boundaries which correspond to the
rotation order N = 3, we insert in the optical loop a di-
aphragm with an hexagonal and triangular shape. As it
can be seen in Figures 3a and 3b, inside the boundaries the
resulting pattern is almost perfectly ordered, like a single-
domain 2D crystal. We used here two types of bound-
aries: a small hexagon and a large triangle. The fact that
both present ordered patterns is a proof that the bound-
ary size has no effect as long as it respects the underlying
symmetry.

We repeat the same experience for N = 4 and we show
the result in Figure 4. Figure 4a is the center of a typical
pattern observed for a circular boundary. Again, the cen-
ter is tiled with an almost ordered square pattern while
the outer regions show defects and slow dynamics. In Fig-
ures 4b–4d we impose a small square boundary. A slight
distortion of the square boundary is responsible for the
apparition of a dislocation, as it is shown in Figure 4b. In
Figure 4c we show that a small re-alignment of the bound-
ary can improve the pinning of the square pattern, so that
the dislocation relaxes and vanishes. A perfectly ordered
and single-domain square pattern is shown in Figure 4d,
for an almost perfect square boundary. For the sake of
completeness, we show in Figures 4e and 4f the patterns

a b

Fig. 3. Effect of boundary for N = 3: (a) a single domain pat-
tern obtained through the application of a hexagonally shaped
boundary; (b) a single domain pattern obtained through the
application of a large triangular boundary.

a

c

b

e f

d

Fig. 4. Effect of boundary for N = 4: (a) circular bound-
ary; (b) application of a slightly distorted square boundary
induces the creation of a dislocation; (c) a small re-alignment
of the boundary improves the pinning so that the dislocation
relaxes and disappears; (d) a single domain pattern fixed by
the application of a perfect square; (e) ordered pattern result-
ing through the application of a large square and (f) through
the application of an octagonally shaped boundary.

obtained for a large square and a large octagon, respec-
tively. We can notice that they are both highly ordered.

In order to analyze the patterns, we process the images
by imposing an intensity threshold and then performing a
binarization. This way, we are able to obtain the location
of each cell composing the patterns. On the binarized im-
ages, we determine numerically the angle between three
neighboring cells. Especially for disordered patterns, we
have to introduce a tolerance for the distance between
nearest neighbors. Image sizes ranges from 150 × 150 to
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Fig. 5. Angles (measured in radians) between three neighbor-
ing cells as a function of the distance from the center of the
LCLV and for N = 3: (a) circular boundary; (b) hexagonally
shaped boundary and (c) larger and triangular boundary.

200× 200 pixels. For the hexagonal patterns, the average
distance between 2 neighboring cells is found to have a
value of 10 ± 2 pixels, corresponding to the average cell
distance and tolerance, respectively. In real units, this dis-
tance corresponds to 500 µm, approximatively. For the
square patterns, the corresponding average cell distance
is multiplied by a factor

√
3, in agreement with the lin-

ear analysis which predicts a larger length scale for the
patterns characterized by an even rotation order [11].

In Figures 5 and 6 we report the angles between three
neighboring cells as a function of the distance from the
center of the image (that we assume to coincide with the
center of the LCLV), for N = 3 and 4, respectively. Fig-
ure 5a is obtained for a circular boundary and in the case
N = 3. Figures 5b and 5c correspond to the angular analy-
sis of Figures 3a and 3b, respectively. Figure 6a is obtained
for a circular boundary and in the case N = 4. Figures 6b
and 6c correspond to the angular analysis of Figures 4d
and 4f, respectively.

4 Discussion

The angle analysis allows the quantification of the pinning
length introduced by the boundaries onto the pattern. For
circular boundaries, disorder is located over an annular re-
gion starting at the boundaries. The width of this annular
region corresponds to the pinning length. When we intro-
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Fig. 6. Angles (measured in radians) between three neigh-
boring cells as a function of the distance from the center of
the LCLV and for N = 4. (a) circular boundaries; (b) square
boundary and (c) larger and octagonal boundary.

duce boundaries which respect the underlying symmetry,
the extension of the pinned region cover the whole pattern.

Indeed, from Figures 5a and 6a, corresponding to
N = 4 and 3, respectively, it becomes clear that patterns
are ordered over a distance which is approximatively equal
to 50 pixels from the center of the circle. The transition
to the disorder is identified by the disappearance of the
band structure in the distributions of points. Then, we
can conclude that geometrical frustration is induced by
the circular shape of the boundaries over a correlation
length which stops at approximatively 50 pixels from the
center. In other words, the center of the images with cir-
cular boundaries remains ordered over a disk which has
a radius approximately three and five times larger than
the typical cell distance for the square and the hexagonal
pattern, respectively.

Moreover, by varying the aperture size in the case of a
circular shape, we observe that the pinning length remains
the same as long as the system size is large enough with
respect to the width of the central ordered region. Then,
we can notice that close to the center the angles separate
in 3 or 2 values, 2π/3, π/3 and π/6 for Figure 5a, and π/2
and π/4 for Figure 6a, respectively. This is the signature
of the fact that some cells in the pattern are missing. As a
consequence, the basic symmetry is locally lowered which
results in the calculation of angles which are multiples or
sub-multiples of the feedback rotation angle.

As it can be seen in Figures 6b and 6c, for the square
case the two angles π/2 and π/4 are present also when we
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impose a square boundary. While the first of these two val-
ues reflects the basic square symmetry and remains con-
stant all over the pattern extension, the second value is a
consequence of the tolerance introduced in the calculation
of the distance. Indeed, this value comes from taking into
account the diagonals of the squares, which is difficult to
avoid with our tolerance in the distances. Given the same
tolerance, the geometry itself removes this problem for the
hexagons. In this case, as it is shown in Figures 5b and 5c,
we obtain a single value π/3 for all the calculated angles,
corresponding to a perfect 2D crystal.

An easy comparison between Figures 5b and 5c on one
hand, and between Figures 6b and 6c on the other hand,
shows that a larger pinned and ordered pattern can be
obtained by simply enlarging the size of the boundary.

5 Conclusion

In conclusion, we have shown that geometrical frustra-
tion can arise because of the circular shape of the bound-
aries, when a lower symmetry is selected for the basic pat-
tern. This frustration can be removed by the application
of boundaries which reinforce the basic symmetry of the
patterns. The fundamental mechanism is a pinning of the
basic structure in a single direction of orientation, which
renders the whole pattern fully correlated over one single
domain. By means of a numerical analysis, we have shown
that the pinning introduced by the boundaries changes
with the shape of the container. This pinning length is an
important scale for the pattern formation problem, since
it defines the border between the small and large aspect
systems, where for a large system it is usually intended a
system not affected by the boundary conditions.

We are grateful to F. Graner for stimulating this article. This
work has been financially supported by the Action Concertée
Incitative Jeunes of the French Ministry of Research.
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